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ABSTRACT

We develop a new method for the calculation of the atom

scattering analog of the Debye-Waller factor. Unlike X-ray and

neutron scattering the properties of an atom scattered by a solid

surface cannot be computed by perturbation theory, therefore the

simple Debye-Waller theory cannot be applied. Nevertheless the

Debye-Waller phenomenon has a close analog: the elastic

intensity is depressed due to the uncorrelated part of the

thermal motion of the lattice atoms. To compute this effect we

develop a time dependent scattering theory in which the quantum

properties of the scattered atom are described by propagating

coherently an ensemble of wave packets and lattice motion is

simulated by a classical Langevin equation. Applications are

made to He and Ne scattering from a surface whose lattice

dynamics mimics that of Pt(111) but whose corrugation was

slightly increased to enrich the diffraction structure.

. /r,. . .
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I. Introduction

The diffraction of atoms by solids has many useful

applications in surface science, particularly as a probe of both

surface structure and dynamics. The shapes and Intensities of

. the diffraction peaks are very sensitive to the thermal motion of

the surface atoms. In this paper we present a theory for the

effect of this notion on the elastic diffraction peak

probabilities; that Is, for the atom scattering analog of the

Debye-Waller factor appearing in x-ray and neutron scattering.
2Prior work has discussed such effects by taking over, with

slight modifications the Debye-Waller formula from neutron
2f..

scattering theory. Weinberg , Hoinkes, Nahr, and
3 2Wilsch 3

, and others used the resulting equation to extract

values for the surface Debye temperature of the lattice atoms and

the results obtained are reasonable. So, while this procedure is

not terribly misleading it is suspect, from a theoretical point

of view, on several counts. The derivation of the Debye-Waller

4
factor in neutron scattering relies ..eavily on the fact that the
neutron-nucleus Interaction can be described by the Feral

pseudopotential. As a result the collision of the neutron with

a given nucleus can be calculated by using the Golden Rule and

the potential has zero range. Furthermore, the neutronrlattice

interaction is so weak that we can assume that the neutrons

passing through the sample have been scattered once (I.e. by one

nucleus) or not at all. Clearly none of these conditions hold

for atom scattering. A more detailed analysis of the difference

between atom and neutron scattering and of the reasons why such

differences affect the Debye-Waller factor can be found in

Appendix 1.

The application of the usual coupled channels method to

collisions with a surface undergoing thermal notion seems im-

practical unless the phonon-particle interactions are treated

within perturbation theory (the distorted wave approxima-

-2.. . o . . . . . . . . . . . . - ..-.. r . .. ..- ... .*N . . .- . -. . . *.9.. . . -



tion). It is not clear, however, whether perturbation theory

is adequate for this situation. One would therefore like to have

a non-perturbative approach to this problem. One possibility is

to treat the motion of the lattice classically and the scatterer

by quantum theory. In general such an approach has difficulties

since a replacement of some of the quantum variables by their

classical trajectories leads to--aolguitles in defining the proper

classical (Newton) equations 8; the theory does not (in the

simplest cases) provide a feedback mechanism by which the

classical degrees of freedom are "informed" that they have to

change their energy when the quantum ones are changing theirs.

One way of avoiding such difficulties is to treat the

quantum degrees of freedom by a method which is very compatible

with classical mechanics. The possibility which we pursue here

is the wave packet method developed by Heller and his coworkers9

and applied to diffraction by a static lattice by Droshlagen and
10

Heller (DH). The method consists of writing the incident

planar wave as a sum of Gaussian wave packets, propagating them

independently by using the time dependent Schroedinger equation

and constructing the scattered wave function by adding coherently

the scattered packets. The theory reduces the wave packet

propagation to the calculation of the time evolution of the

position of the center of the wave packet, its mean momentum, and

its width and phase. The center of the packet and the momentum

evolve according to the classical equations of motion, the phase

at the end of the trajectory is the classical action and the

width satisfies a first order differential equation. All these

quantities depend on the instantaneous position of the lattice

atoms through the classical atom-lattice interaction. We

propagate the, lattice atom positions by using the Adelman-Doll-
12 ,

Tully method (ADT) which provides a Langevin equation for the

motion of the surface atoms involved in the collision with the

,- probe atom. As a result of combining the Langevin equation for
the surface atoms with the wave packet description of the



- -. ....

4

Incident particle the motion of the packet is modified as

,*. follows: the position r and the momentum Pt of its center are

" now stochastic variables evolving according to a classical

* *.Langevin equation; the phase which depends on rt and Pt is also

randomized, thus creating a dephasing which leads to a decrease

in the diffraction peaks intensity and an increase in the

background scattering. The width-which provides a space

dependent phase and an amplitude- also becomes a random variable.

........................................ .... ... .... ... .... ... ... .... .. * -,*.. ...
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II. THE METHOD

Since we plan to treat the lattice motion classically we

start with the customary classical trajectory approximation

method (CTA). If the Hamiltonian depends on two sets of

variables x and y and we want to treat y classically then we use

the "reduced" Hamiltonian

2 2H(x,y(t)) - -(t% /2m) V V(x,Y(t))
X

The kinetic energy operator -(? 2/2m)V2 is removed from the
y

Hamiltonian since this quantity is included in the classical

equation of motion for y(t). The potential energy and the wave

function *(x;y(t)) depends on the classical variable y(t)

parametrically. In the present case the quantum variable x is

the atom position r and the group of classical variables y(t) is

the set ~(t) of lattice atom positions.

Following DH we write the time dependent wave function

o(r~t) of the incident atom in the form

- G (r;(X (t))) (11.2)

where G is a Gaussian wave packet (GWP) given by

G (r,{x (t))) - exp((i/h)[(r-r (t)),- ' (t).(r-.r (t)) -

p ( t ) ( r -r ( ) t ] ( 1 1 .3 )- ..

The set (X (t)) is a symbolic notation for the time dependent
C.-4 . 0 -. 

.I.

K : parameters A , r (t), p t) and r (t). The parameters r (t) and

PC(t) are the expectation values of the position and momentum of

the packet

. -L!7

S. ."
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The complex quantity y (t) generates the phase Rey (t)/i and the

amplitude exp(-Im y (t)/h} of the packet. The three dimensional

square matrix V (t) controls the width of the packet (through its

imaginary part), generates a space dependent phase (through its

real part) and couples the variables x y, z (in the interaction

region) through its off-diagonal elements.

The time evolution of the wave function *(.;t) is obtained

by what we call the simplest Heller method (SHM). This forces

the parameters X (t) to vary in time so that each Gaussian

satisfies the time dependent Schrodinger equation

/2m) V( .l' (t)) G (';{> (t))) = G (r;.

r

(11. 5) .

We use the CTA Hamiltonian in which the lattice atoms positions

(lt) are treated as classical fields.

To obtain equations for the time evolution of X (t) SHM

expands V(r;(R (t))) in a power series around the instantaneous

packet position rM(t) and neglects the terms higher than second

order in (r - r=(t)). By introducing this expansion in (11.5)
n

and equating the coefficients of (r - r (t)) , n = 0,1,2 to zero

SHM gives

r (Xt) PO p Mt /m (II.5a)

--. KC . * * .*...-..: .. °] c< -. i
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,O (t) - 3-V(r M(t);(Ri t)} /3 r (Q t (II.5b)

A (t) - -(2/1) A (t)- IA(t)
a a

- (1/2) -1 Y .V r (t);{R t)} (II.5c)

and
2

Mt- (ixm)Tr(T (t))+(1/2m)p (t)- Vl'r (t);(lR(t))).

(II . 5d)

Here a2V(r ;{R ))/3r ar is a matrix whose xy element is
2ee I C/ a

a V/ax (t)3y (t), where xc(t). YU(t) and z (t) are the components

of the vector r (t).
cc

These equations indicate that r (t) and pc(t) follow
U -

classical trajectories with the potential V(c (t); (Rilt)}).

Furthermore. one can show that the phase f (t) is equal to the

classical action along these trajectories. The width 4a(t) has

its own dynamics, with no classical analog, and depends on the

force constant tensor (i.e. the second order derivatives of the

classical potential).

To solve the equations (11.5) we must provide a

prescription for the classical motion of the surface atoms. For

this we use a method proposed by Adelman and Doll and developed

by Tully. 12This provides a Langevin equation for the motion of

the lattice atoms suffering the brunt of the collision.
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III. LIMITATIONS

In order to see Laue diffraction, our state must be

sufficiently coherent in x and y over several unit cells to probe

the surface periodicity. We accomplish this by overlapping many

packets in a two dimensional grid covering a single unit cell,

choosing their initial phases such that together they simulate a

plane wave and using Bloch's theorem to extend this coherence

over many unit cells. Following DH, this is done by making use

of the identity:

kr0
C(r,o) = ce

= c'$d 0 exp{i/[( -r) A- o) + i -r
o 0 0 0 0 0

o.ro] 0II

Replacing this integral by a sum over many equally spaced points

r produces a grid of packets which mimic a plane wave. These

packets are scattered from the surface and the final state f(r,

t) is projected onto various outgoing plane wave states X(r),

where

.-.-.- '

X(r) = e iqr (111.2)

Thus, the probability of being in a plane wave state having some

wave vector q, is the squaPe of the S matrix'

P(q) = IS( q) 2 (111.3)

where

S(q) = <Xl > (111.4) "-

*'. *. . . .. . .

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .



One can show that for the case of a static lattice, it is
sufficient to scatter from a single unit cell in order to

10 C2
calculate the diffraction probabilities. In this paper, we

also use a single unit cell, that is, we use the ADT method to

propagate a four atom primary zone on the surface. The result is

that we suppress the long range correlations between the motions

of the surface atoms, and we therefore cannot reproduce the

effect of thermal motion on the diffraction line widths.

However, this does not affect the "Debye-Waller" factor for the

elastic diffraction peaks, since this arises from the

uncorrelated motion of individual atoms. More is said about this

in Appendix 2.

Two other limitations, should be mentioned: (1) the use of

a single layer of packets along the z coordinate makes the

incident state partially coherent. The manner in which this

13affects diffraction was discussed in a previous paper. (2) the

131use of SHM may introduce some errors;3.14 however, existing

calculations agree with some exact results.Oa 

• *1

-]
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IV. Numerical results

The procedure of computation is as follows:

1. Making use of Eq. 111.1, we. write our initidl plane

wave state as a grid of packets covering the area of one unit

cell. A 15 x 15 array is usual-ly sufficient. The distance

between the center of a packet and the surface is 6 A or more.

2. Each packet is then propagated individually, is

scattered from thp primary zone, and Its contribution to the S

matrix (Eq. 111.4) is computed. The initial conditions and the
random fluctuations which determine the motion of the primary

zone atoms are the same for each packet.

3. The S matrix contributions for all trajectories are

added (coherently) and the result is squared to find the

scattering probabilities.

4. The procedure is then repeated several times, using

each time a different set of initial conditions and fluctuations

for the lattice atoms. The results are averaged until ---

convergence is seen. This requires only a few full runs below

100 K, and as many as 30 or more above 300 K.

Using this procedure we examine the diffraction of He and

4e from a Pt(1ll) surface. The atom-surface potential consists

of two terms:

V(r) 1  c 3 c4
V~r) +(IV.1)r-R 111 Ir I z z ::-

The first is a sum of individual Lennard-Jones 6/12 interactions

with several surface atoms located at R Four of these are the

* ...- _
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primary zone atoms, and the rest (usually 10 are sufficient)

surround the primary zone to help define the surface corrugation.
12a

As discussed in Tully's paper, the primary zone Is moved along

the surface so as to be always below the impinging packet. The

second part of Equation (IV.1) is a bulk interaction, resulting

from a pairtise summation of Lennard-Jones 6/12 interactions with

all the atoms in the solid. It Is only a function of z, and has

the proper z - 3 long range attractive part. The parameters c

through c4 were chosen to produce a well depth of .125 kcal/mole

and a corrugation of .19 A for a Ne beam energy of 1.0 kcal/mole.

This particular form for the potential was chosen not to mimic

the actual He/Pt(lll) system, which has negligible off specular
15

scattering, but to provide a model system with reasonable

corrugation for study. The primary zone uses the parameters

calculated by Tully 1 2 to simulate the actual Pt(1l1) surface.

Unless otherwise noted, the beam energy was taken to be 1.0

kcal/mole, with an incident polar angle * = 30 along the

negative x direction ( = 0).

When we calculate S(q) we generally choose qx and qy at or

near a diffraction peak, fixing q by energy conservation. We

could similarly choose a detector angle (@,e*) and fix the

magnitude of q, that is IqI - 11o1, where IT Iis the magnitude

of the initia-1 wave vector. This is only valid in the limit of

elastic scattering. If we want to describe experiments in which

the energy of the scattered beam is not analysed we must

* integrate over all final I1's, allowing for all possible final

He energies. Thus the detection probability at some angle (e,*)

Is

P ) d q q P(Iql.o,*) (IV.2)
0

The easiest way to determine this would be to compute P at

some (o,i) for several Iq 's, and add them up with the proper

weighting. We again encounter a problem with beam coherence.

TI .... . . . . .. . .,. .... , .. ,:.-......,.-.,.-.....-:.-__ -
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Our initial state has a finite width in z and covers only a

single unit cell in x and y. Due to this finite spatial extent,

*. Its momentum is not so sharply defined as in a planar wave. Thus

the final distribution of probabilities as a function of I I

depends upon how much area our initial state covers. Consider

Figure 1 where we plot P(IqJ.e,#) for various values of IqI

centered about j1 - IT0 1 and (0,*) corresponding to the specular

peak. As we increase N. where 0(r.o) now covers NxN unit cells,

the distribution sharpens up as expected. Thus P(e,) in

equation (IV.2) is a function of N. Since It might require very

large N's to make this dependence go away, we choose I'I - Ito0.

What we calculate then is the elastic DW effect, which is -

equivalent to doing a time of flight diffraction experiment. We

confirm that it is N that dominates P(IqI) (for small N) in

Figure 2. We plot two distributions similar to figure 1 for the

2 x 2 cell case, but at different temperatures. Normally the 400 -

K case would have a broader distribution, but both have the same

N = 2 limiting width.

In terms of the diffraction peak widths in real or k-space,

we see the same behavior. In Figure 3 we plot P vs AK in the

vicinity of the (1,0) peak. At is the change in the parallel

component of the beam momentum, in units of T, (the reciprocal

lattice vector in the (1,0) direction). We plot P for both N-2

and 3 and T-1OK and 200 K. For each N we see the same peak

intensities and DW effects, with only the width being different.

Again the beam coherence dominates and we find their widths to be

T/N, as in Equation A.4.

For the above He system, the (1,0), (0,1) and (1,1) peaks

all have a reasonable probability and we consider their intensity

vs. temperature in Fig. 4 where P(T)/P(O) is the ratio of the

peak probability at some temperature T, to that at T-0. The

curves resemble the form e - aT as predicted by first order

- -. .
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2perturbation theory.. This it not surprising since He is a very

light scatterer and the He/Pt mass ratio is only about .02. At

higher energies and for larger atomic masses, we should see more
deviation. In Fig. 5 we plot ln P(T)/P(O) for the (1,0) and

(1.1) peaks. The data resembles the straight line predicted by

2the Debye-Waller theories based on neutron scattering. Note

that at higher temperatures we begin to see deviations from a

linear behavior. This is exactly the behavior observed

experimentally, for such systems as He/Cu(100). A point to be

made here concerns the two different slopes observed in Fig 5 for

the (1,0) and (1,1) peak probabilities. Since these off specular

peaks couple differently to the x and y components of the

displacement 1(t) of the surface atom (they have a different Ak X

and Ak y), they show a different Debye-Waller effect. To properly

predict this using the simple models would require a knowledge of

the displacements, which are not equivalent for a non-cubic

structure such as Pt(ll1).

In Fig. 6 and 7 we plot similar data for the case of Ne on

Pt. The beam energy is 5.0 kcal/mole, which gives the incident

Ne atoms the same velocity as the 1.0 kcal/mol He energy

considered previously. Because of the larger mass ratio (0.1) we

-ee much more energy exchange with the lattice. At 200 K the

average energy change is -. 32 kcal/mole and AE - .72rms

kcal/mole. For the above He system, these values were only .005

and .11 kcal/mole respectively at the same temperature. In

addition to the specular we include data for the (0,2) and

(-2,3) peaks, all of which show about the same intensity. Again

we see a different dependence on temperature for each peak. We

also see a nearly linear behavior in Fig. 7 up to about 500 K

when the intensity becomes larger than a simple theory 2 would

predict. We also see some deviations, for both He and Ne, from a

linear behavior at lower temperatures, but his deviation is

small.

;, ..................................... . . ..... .... .......-. .. ,..-.:'T
""" " .. '""" ' " '" " " " " " " "" " " ' " " '" " "" "" . _ . :; i = . 'T' : 'T .,-.; 'L -- ' - - '
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The method proposed here seems to be able to aCcount tar

the temperature dependence o? difraction peak intensities and

predicts behavior similar to that observed experimentally. In

order to achieve a complete description of diffraction the wave

p-acket method should be extended to incorporate two effects: the

broadening of the peak by energy and parallel momentum transfer

and the resonances caused by temporary trapping at the surface

(selective adsorption). As we have already discussed, the

inclusion of the first effect is automatically achieved by

increasing the size of the primary zone and by using enough

Gaussians to cover the whole zone. This leads to a very

substantial increase in the computer time. The incorporation of

selective adsorption requires new theoretical developments.
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APPENDIX 1

We discuss here the differences between the present -

approach and earlier work which modified equations valid for X- 0

ray and neutron scattering to take into account in an approximate

way certain features specific to atom scattering.

The simplest way to obtain the DW factor is to examine the S

scattering of a projectile by the thermal average of the lattice

projectile interaction. If we use a pair-wise potential V(r) "

V(r - R we can write its average value as

p

d';k-r cc W )'-'
<V(r)> V(;)(1 e ) e (A.1)

(2ir)3 a-

We have written here V(r) in terms of its Fourier transform V(k)

and performed the average by using Bloch's formula <expQ> =

2
exp[<Q >12], where Q is any linear combination of the phonon

creation and anihilation perators. The DW exponent is

W(;) - (1/2) <(1.k*R) 2 >

where 8R is an operator representing the displacement of the

lattice atom with respect to its equilibrium position (i.e.

lattice site).

For X-ray and neutron scattering by the bulk of a lattice

we can use perturbation theory; the transition amplitude from an

initial momentum k i to a final momentum If is then <kf <V> ;i>A

and this leads to a cross section proportional to

2 2 2 22 2
!V(q)j exp(-2W(q))Z exp{i*. }I 8[(,, / 2 m)(kf-kl (A.2)

* -p...p.

where q a k k I is the momentum transfer; the sum leads to the
f i

Z _1
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pI
Bragg conditions; the 6 function imposes energy conservation.

One can show that the DW factor exp(-2W(q)) will also

m,ultiply the inelastic cross section.

Physically the DW term appears because the atoms are

displaced with respect to the position of the lattice points

according to a Gaussian distribution of width <62>; the

displacements of any two atoms are uncorrelated and for this

reason no terms involving these displacements appear inside the

sum in Eq (A.2). As a consequence, these displacements do not

affect the coherence properties of the scattered beam and the

diffraction line shape. Note that in its simplest form this

phenomenon appears in an interference experiment in which we

superimpose the interference patterns generated by a set of

screens with two pinholes. In each screen the pinholes are off,

by a distance 6R, from their intended position; the probability .

that on a given screen the error 8R has a specified value is

given by a Gaussian; there is no correlation between the errors

made for the pinholes on the same screen.

The Debye-Waller factor exp(-2W(q)) appearing in Eq. (A.2)

is intimately connected to perturbation theory. The general

phenomenon is not. It simply has to do with the fact that the

elastic scattering intensity is depressed because the the thermal

motion makes the atomic gratting slightly faulty. The effect

does not modify the line width because the errors made at

effect, as done here, by using the Langevin equation to generate

the random, uncorrelated motion of the lattice atoms and not

perturbative scattering theory to describe its effect on

diffraction. The previous work followed a different path. It

assumed that with adequate repair the neutron scattering formula

(A.2) can be applied to atom scattering. (a) Since perturbation

theory is not expected to work the formula was corrected in the

S".
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spirit of the distorted wave approximation. It was assumed that

the atom-lattice interaction has two effects: first it speeds up

the incident particle; then the accelerated particle is scattered

by the hard core potential according to a formula of the type

(A.2). Thus Eq. (A.2) (or its version, corrected to deal with

surface rather then bulk scattering) can be used if the initial

momentum appearing in it takes Into account the acceleration

mentioned -above. This is chosen to give a kinetic energy equal

to the initial kiL'-etic energy plus the well depth. First it is

not clear what permits us to divide the collision processes

precisely in this way. One may argue that perhaps we should take

the initial momentum zero since at the moment of impact the

particle had been slowed down by the repulsive part of the

potential. Furthermore the interaction with a potential of a

finite range I does not create a planar wave with a large wave

vector but a wave packet of with 1-  (in momentum). Therefore we

should not use the Eq. (A.2) but a version in which the initial

wave packet is a Gaussian. This would lead to different

results. 13 Finally, on more formal grounds, we should use a T

matrix rather than V and there is no clear reason why T(r) should

resemble V( ) (e.g. should have a "potential well", etc.) An

examnation of the second order terms <V>G<V> in the expansion of

the T matrix in terms of <V> shows clearly that the higher order

terms do not contain a DW factor of the type given by Eq. (A.2).

b) Since the pair-wise interaction between the incident

atom and the solid atoms is not as well localized as the neutron-

atom one, it is impossible to avoid the simultaneous interaction

of the incident atom with several solid atoms; moreover

successive interactions with several atoms are also important.

None of these "multiple collision" events lead to a Debye-Waller

like term. The attempts made to correct for such effects are not

2systematic and do not seem to lead to agreement with experi-
ment.2 ---"
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APPENDIX 2

In order to properly compute the width of a diffraction

peak, using the method described in this paper, one must scatter

a grid of packets from a dynamical surface of sufficient area.

The width of this area is given by the correlation length X

which is the length over which the density-density correlation

function for the surface atoms decays to the density squared.

The nature of this decay determines the diffraction line shapes.

Making the primary zone larger than (X(T)) is redundant. When

-2-we scatter a beam with a cross section smaller than X(T) the

beam size controls the diffraction peak width. We demonstrate

this with the following simple model taken from neutron

scattering.

For neutron scattering, first order perturbation theory is

generally used to relate the scattering probability to the above
4mentioned density density correlation function. One finds,

P(k') o Idt e Z <e e >
ij

where l(t) is the time dependent position of the Ith lattice

atom, and Ak = k' - k is the change in wave vector of the

scattered neutron beam. Writing this for one dimension, where
n

- nc (n-O,l .... N) labels the equilibrium position of the nth

atom, we assume that the above correlation function for the

fluctuations from equilibrium decays exponentially in space with

some length . Thus.

NP) N •-iAk(n-m)c •-In-mlc
P(K) a Z e e

n'm - 0

where c is again the lattice spacing. We do the summation

exactly to find

. . . . . . . . . .. . .
.....................................................................



" N(1-e - 2 X c ) 1 - (
_

A k X I N + ) c

-2XC 2-XC -" -IAkc Xc IAkc
l -2e cos(&kc) 2-e e -e e

+ .1 e(I,&k-X)(N+1)c(A 3
2-e e -2_'e_XC e AkC_ e XCe- Akc A3

In the limit of zero temperature, X(t) 0 0 (infinite

correlation), and we recover the Bragg condition.

sin( cAk(N+1)
2P(k') a c~k (A.4)sin(-- 

This Is also the result when the beam size is smaller than N.

(Nc<X-1 ), and the surface is coherent as far as the probe can

detect. In this case the peak widths are independent of X(T),
-1having widths in k-space of 2(Nc) As N and -1 become very

large, we get delta function peaks.

In the opposite limit, the beam covers an area larger than

the correlation length, and Nc>X In the neighborhood of a

peak, at a 6k = Ak - 2.rm/c. Eq. (A.3) reduces to

P(q) X
c X2, (Sk) 2

(we assume that )
" 1 is larger than a few lattice spacings). The

peak structure is now independent of N, and the width is X(T),

which increases with temperature. The shape of the peak is

determined by the manner in which the density-density correlation

function depends on distance; the Lorentzian above being a

consequence of the choice of a simple exponential decay.

Thus, to generate the proper temperature dependence in the

diffraction peak widths, we need to use the ADT method to

propagate a primary surface larger than (X(T)) - 1 . and probe it

with a beam of at least this size. In general this size can be

~~~~~~~~~~~~~... .... . . . ° . * % .°'°% °o",°•° °° oo .'. .. .... . . .° ,. . . . . . . . . .... . . . . . .



20

quite Narge at low temperatures, requiring much computer time.

However, in order to generate the proper dependence of the

elastic peak intensities with temperature due to lattice motion,

it is sufficient to scatter from a single unit cell. We can see

this from a simple examination of the neutron scattering cross

section for a thermal lattice. This expression can be written in

terms of the density-density correlation function for the lattice

atoms mentioned earlier. That is

P c $ dt e- Jd e ,r G(',t)

where
1 $d .'<p( ' I_ _

G(,t) -dr <p(r'-',o)p(' ,t)>

It is possible to divide this expression into a sum of elastic

(time independent) and inelastic (time dependent) terms by taking

G(Tr t) = G(',a) + G (r t)

where G(ro,m) is time independent since

2
lim <p(rt)p(oo)> =<p>
t-Pa

The elastic peak intensity is thus

- iAk-r -~ 2P el a~fdr e ~'<P('r)>l a E 8(Ak-T)exp[-2W('T)]-."

where T are the reciprocal lattice vectors of the solid. The

Debye-Waller factor exp[-2W(T)], therefore, is related to the

Fourier transform of the density operator for a single lattice

site. All site to site time and spatial correlations lead to

* energy and momentum transfer (i.e., inelastic processes), and are

• included in G'(r t).

•~~~~~~~~~~~ ~~~~~. .... ...............-..,..-....-,.-,.-....................... -.--..... ...,*.'*.- ** ,', * ,' . ,..,, ... .
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Figure Captions

Figure 1. Velocity distribution of scattered beam relative to

average initial velocity (hk /m) for an intial grid
0

of packets covering NxN cells, where N=I (XXXXX).

2(-..-..-..), 3(------), and 4(- ). Surface

temperature Is 100 K.

Figure 2. Same as above for -N=2 case, except the surface

temperatures are 100 K (XXXXX) and 400 K (000).

Figure 3. Peak probability vs. AK. AK is in units of the

reciprocal lattice vector in the (1,0) direction

(i.e., AK - 1.0 marks the (1.0) peak). The plots

are for an initial grid covering NxN unit cells.

where N=2, T=iOK € -), N-2, T-2OOK (-----). N=3,

T=10K (0000). and N=3, T-200K (-0-0-0-0). Note that

peak height is independent of N. which only affects

the width.

Figure 4. Peak probabilities P(T) as a function of surface -

temperature, "relative to static lattice values P(O),

for the (1,0) (* 00), (2,0) (000), and (1,1)(XXXX)

peaks for He/PT(i1I).

Figure 5. Log of the relative probabilities of Fig. 4 vs.

temperature, for the (1,0) (0000) and (1,1) (00,0)

peaks.

Figure 6. Peak probability vs. temperture for the (0.0) (00-o)

(2,0) (0000), and (-2.3)(XXXX) peaks of Ne/Pt(111).

Figure 7. Log of the probabilities in Fig. 6 vs. temperature

for the (0,0) (0000) and (2,0) (000 peaks.
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